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1. Introduction

The usual approach in analytical studies of the stabilitthef Trojan asteroids is
to consider simple models for the system such as the two dimeal (2D) pla-
nar, and the three dimensional (3D) spatial restrictecetbaly problem (RTBP)
(Giorgilli et al., 1989; Simd, 1989; Celletti and Giorgjli991; Celletti and Ferrara,
1996). As an example of a more complicated model for the probie refer to the
model developed by Gabern and Jorba (2001) where the effe&atarn on the
motion of the asteroid has been taken into account. Thedaggaiused in these
papers are based in normal forms or first integrals calanatiRoughly speaking
one shows that the system admits a number of approximaigrahse whose time
variation can be controlled to be small for an extremely longe. In this case we
have effective stability, i.e. even when an orbit is not Etathe time needed for it
to leave the neighborhood of the equilibrium is larger thanexpected lifetime of
the physical system studied. This is the basis to derivelttssical Nekhoroshev's
estimates (Nekhoroshev, 1997). The first result that gtiagathe effective stability
of real asteroids was provided by Giorgilli and Skokos ()987 the 2D RTBP. In
the present paper we refer to some recent results for the 3BPRibtained by
Skokos and Dokoumetzidis (2001).

2. Egtimating of the size of the effective stability region

We consider the spatial RTBP in particular for the Sun ()itéu (J) and asteroid
(A) system. We introduce a uniformly rotating frame 2,0, g3) so that its origin
is located at the center of mass of the Sun-Jupiter systethtkié Sun always at
the point (4, 0, 0) and Jupiter at the point€ 1, 0, 0). The physical units are chosen
so that the distance between Jupiter and the Surnis=19.5387536 10~* and the
angular velocity of Jupiter is 1. The time unit(&m) ~1T;, whereT,; is the period
of the circular motion of Jupiter around the Sun. So the agketiniverse is about
10 time units.
In order to bring the Hamiltonian to a form suitable for thepligation of the

normal form scheme we perform a sequence of transformations

— We introduce a uniformly rotating frame with its origin oretBun (S) using

the generating functios = —(Qq + W) p1 — Q2p2 — Qzp3 + UQz, WhereQy,
Q2, Qs, P, P, P5 are the heliocentric coordinates.
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— We introduce cylindrical coordinatéy ©, Z, via the canonical transformation
introduced bys = —P(Pco® + P,sin®) — ZPs.
— We move the origin of the coordinate system to the Lagrangaant L, using
the generating function, = py(P—1)+ (py+1)©0— 211pr + pZ.
— We expand the resulting Hamiltonian in Taylor series arotivad pointL4
(X=y=z=p=py=p,=0).
— We introduce a canonical transformation which brings thadgatic part of
the Hamiltonian to the diagonal forH, = 33_; w; (X2 +y?) /2, wherex,
X2, X3 are the canonical coordinateg, y», y3 the conjugate momenta and
w; ~ 9.967575 1071, w, ~ —8.046388 1072, w3 = 1.
Then, following Giorgilli et al. (1989) we construct the noal form Z(") up to
orderr. So we have&Z(") = Z, + Zs+--- + Z, + Y, whereZs is a homogeneous
polynomial of degrees in the new ‘normal variablest;, X,, X5, ¥, Y5, Y5 andY (")
is a remainder, actually a power series starting with terindegreer + 1. The
normal formZz(") admits three approximate first integrals of the farifx,y') =

(X2 +y4?)/2 for j = 1,2,3, the time variation of which is given by = [11,Z(1)] =
[Ij,Y(r)], which is a power series starting with terms of degreel. We remark

that[, ] denotes the Poisson bracket.
The stability of the system is studied in domains of the form:

ApRz{(%,y)eRG : x’,-2+3/,-2§p2R,2}, j=123, (1)

whereRy, Ry, R3 are arbitrary fixed positive constan{s,is a positive parameter
and X, y stand forx;, x5, X; andy}, Y,, y; respectively. The nornf f||,r of a
homogeneous polynomidi(x',y') of degreesin the domaimnAsr does not exceed
the quantity:
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3kikoks

whereC;j, j, sk koks are the complex coefficients dfx,y’) when f is transformed
in complex variable€, n via the transformation; = (&; + inj)/v2, Y =i(& -
inj)/v2 for j = 1,2,3 (Giorgilli and Skokos, 1997).

Suppose that the initial point of an orbit lies in the domajgr for some posi-
tive valuepo. We fix a larger domaidpr, with p > po, and ask how long the orbit
will be confined in the latter domain. We shall refer to thimei interval as the
escape time. Sincel| = dl;/dt, we get

ai j=1,23 (3)
22— 1=L449,
SURh 1]

where sup_, |I'j| is the supremum norm d{, over the domaim\,r. The problem
is how to estimate Sup. |I'j|. To this end, we proceed as follows. Assuming {hat
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is smaller than half of the convergence radius of the reneaivit!) we can use the
approximate estimation

suplf| < 21}, % 2 lor = 20711}, YA e @
Dpr
where\(r(pl is the first term of the remainder. We can estimate the minirescape

time by integrating both parts of Eq. (3) using also Eq. (4)ofder to eliminate
the dependence of the escape time on the final domain vpetdidoe equal ta\po,
with A > 1, so the minimum escape time becomes

23
Ta(Po) = min T [1_ fll} ' ©
/ =123 2(r— 1)ph Y1 Y e L A

The above results have been obtained for the spatial RTBRadoube easily
applied to the planar RTBP by assuming that the asteroid irsntm the plane
of Jupiter’s orbit. As already explained the normal form ligadned as an infinite
series so in practice we stop the expansions of the severcidus at order = 30
for the 3D case and at= 50 for the 2D case. Since in both cases we compute the
first order of the remainder the normal form is constructetbugrder 29 for the 3D
case and up to order 49 for the 2D case. We alsa\usd..2, which means that the
radius of the final domain is 20% greater than the radius oftitiel domain. In
order to optimize the minimum escape time with respectvi@ computer, 1 2(po)
via Eq. (5) forr running from 3 to the maximum order—"1, for every value of
Po. We choose the optimal ordegy: of the expansion as the one that gives the
maximum value of the escape time. Thus we get the maximunpedtaeT as
function of only the radiupg of the initial domain:

T(Po) = MaxTr.12(Po) - 6)

Assuming as a meaningful time interval for the system theneséd age of the
universe, which is in our time units 1% we can find the value of the radipg of
the corresponding stability region.

3. Application toreal asteroids

In order to apply the above results to the real solar systermexanine if 98
real asteroids, which are located near the Lagrangian pgifthe ones tested by
Giorgilli and Skokos, 1997), are inside the estimated éffecstability region. So,
using the orbital elements of the asteroids we compute plosition in the various
coordinate systems introduced in the previous sectionpeldfie radiiRy, Ry, R3
for every asteroid and estimate the corresponding ramio$the effective stability
region. Then an asteroid is inside the stability regioppif> 1. We note that in the
2D case only the values & andR; are used.
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In the 2D case we guarantee the effective stability of foaf asteroids since
they are inside the planar stability region, while in the starase a factor 27 is
needed for the most remote asteroid to be inside this re@ioaoptimal order for
all asteroids isopt < 38, although the expansion of the normal form was performed
up to order 49. So the computation of the normal form to ortiyser than 38 does
not improve the estimations in the 2D case.

In the 3D case one real asteroid is inside the stability regidiile in the case
of the most remote asteroid the estimated valupydé smaller than 1 by a factor
34. In all cases the optimal order of the normal form is the imar possible,
ropt = 29, which means that the results may be improved for highéersr We
remark that one would expect to find fewer asteroids insidestability region in
the 3D case than in the 2D case, since the spatial stabititgmds projected on a
plane in the 2D case and points that are outside the spatflist region may be
projected inside the planar stability region. The abovaltegmprove significantly
older estimations (Giorgilli et al., 1989; Celletti and @jili, 1991) where no real
asteroids were inside the stability region and a factor B@as needed for the
most remote asteroid to be inside this region.
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