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1. Introduction

The usual approach in analytical studies of the stability ofthe Trojan asteroids is
to consider simple models for the system such as the two dimensional (2D) pla-
nar, and the three dimensional (3D) spatial restricted three body problem (RTBP)
(Giorgilli et al., 1989; Simó, 1989; Celletti and Giorgilli, 1991; Celletti and Ferrara,
1996). As an example of a more complicated model for the problem we refer to the
model developed by Gabern and Jorba (2001) where the effect of Saturn on the
motion of the asteroid has been taken into account. The teqniques used in these
papers are based in normal forms or first integrals calculations. Roughly speaking
one shows that the system admits a number of approximate integrals, whose time
variation can be controlled to be small for an extremely longtime. In this case we
have effective stability, i.e. even when an orbit is not stable, the time needed for it
to leave the neighborhood of the equilibrium is larger than the expected lifetime of
the physical system studied. This is the basis to derive the classical Nekhoroshev’s
estimates (Nekhoroshev, 1997). The first result that guaranties the effective stability
of real asteroids was provided by Giorgilli and Skokos (1997) for the 2D RTBP. In
the present paper we refer to some recent results for the 3D RTBP obtained by
Skokos and Dokoumetzidis (2001).

2. Estimating of the size of the effective stability region

We consider the spatial RTBP in particular for the Sun (S), Jupiter (J) and asteroid
(A) system. We introduce a uniformly rotating frame (O,q1, q2, q3) so that its origin
is located at the center of mass of the Sun-Jupiter system, with the Sun always at
the point (µ, 0, 0) and Jupiter at the point (µ�1, 0, 0). The physical units are chosen
so that the distance between Jupiter and the Sun is 1,µ= 9:5387536�10�4 and the
angular velocity of Jupiter is 1. The time unit is(2π)�1 TJ, whereTJ is the period
of the circular motion of Jupiter around the Sun. So the age ofthe universe is about
1010 time units.

In order to bring the Hamiltonian to a form suitable for the application of the
normal form scheme we perform a sequence of transformations:� We introduce a uniformly rotating frame with its origin on the Sun (S) using

the generating functionW3 =�(Q1+µ)p1�Q2p2�Q3p3+µQ2, whereQ1,
Q2, Q3, P1, P2, P3 are the heliocentric coordinates.
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2� We introduce cylindrical coordinatesP, Θ, Z, via the canonical transformation
introduced byW3 =�P(P1cosΘ+P2sinΘ)�ZP3.� We move the origin of the coordinate system to the LagrangianpointL4 using
the generating functionW2 = px(P�1)+(py+1)Θ� 2πpy

3 + pzZ.� We expand the resulting Hamiltonian in Taylor series aroundthe pointL4(x= y= z= px = py = pz = 0).� We introduce a canonical transformation which brings the quadratic part of
the Hamiltonian to the diagonal formH2 = ∑3

j=1ω j(x2
j + y2

j )=2, wherex1,
x2, x3 are the canonical coordinates,y1, y2, y3 the conjugate momenta and
ω1 ' 9:967575�10�1, ω2 '�8:046388�10�2, ω3 = 1.

Then, following Giorgilli et al. (1989) we construct the normal form Z(r) up to
orderr. So we haveZ(r) = Z2+Z3+ � � �+Zr +Y(r) , whereZs is a homogeneous
polynomial of degrees in the new ‘normal variables’x01, x02, x03, y01, y02, y03 andY(r)
is a remainder, actually a power series starting with terms of degreer + 1. The
normal formZ(r) admits three approximate first integrals of the formI 0j(x0;y0) =(x0j 2+y0j 2)=2 for j = 1;2;3, the time variation of which is given bẏI 0j = [I 0j ;Z(r)℄ =[I 0j ;Y(r)℄, which is a power series starting with terms of degreer +1. We remark
that [ ; ℄ denotes the Poisson bracket.

The stability of the system is studied in domains of the form:

∆ρR = n(x0;y0) 2 R6 : x
02
j +y

02
j � ρ2R2

j

o ; j = 1;2;3 ; (1)

whereR1, R2, R3 are arbitrary fixed positive constants,ρ is a positive parameter
and x0, y0 stand forx01, x02, x03 and y01, y02, y03 respectively. The normk fkρR of a
homogeneous polynomialf (x0;y0) of degrees in the domain∆ρR does not exceed
the quantity:k fkρR� ρs

2s=2 ∑
j1 j2 j3k1k2k3

��Cj1 j2 j3k1k2k3

��Rj1+k1
1 Rj2+k2

2 Rj3+k3
3 ; (2)

whereCj1 j2 j3k1k2k3 are the complex coefficients off (x0;y0) when f is transformed
in complex variablesξ, η via the transformationx0j = (ξ j + iη j)=p2, y0j = i(ξ j �
iη j)=p2 for j = 1;2;3 (Giorgilli and Skokos, 1997).

Suppose that the initial point of an orbit lies in the domain∆ρ0R for some posi-
tive valueρ0. We fix a larger domain∆ρR, with ρ > ρ0, and ask how long the orbit
will be confined in the latter domain. We shall refer to this time interval as the
escape timeτ. Sinceİ 0j = dI0j=dt, we get

dt� dI0j
sup∆ρR

jİ 0j j ; j = 1;2;3 ; (3)

where sup∆ρR
jİ 0j j is the supremum norm oḟI 0j , over the domain∆ρR. The problem

is how to estimate sup∆ρR
jİ 0j j. To this end, we proceed as follows. Assuming thatρ
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3

is smaller than half of the convergence radius of the remainderY(r) we can use the
approximate estimation

sup
∆ρR

jİ 0j j< 2k[I 0j ;Y(r)
r+1kρR = 2ρr+1k[I 0j ;Y(r)

r+1kR ; (4)

whereY(r)
r+1 is the first term of the remainder. We can estimate the minimumescape

time by integrating both parts of Eq. (3) using also Eq. (4). In order to eliminate
the dependence of the escape time on the final domain we fixρ to be equal toλρ0,
with λ > 1, so the minimum escape time becomes

τr;λ(ρ0) = min
j=1;2;3 R2

j

2(r�1)ρr�1
0 k[I 0j ;Y(r)

r+1℄kR

�
1� 1

λr�1

� : (5)

The above results have been obtained for the spatial RTBP, but can be easily
applied to the planar RTBP by assuming that the asteroid remains on the plane
of Jupiter’s orbit. As already explained the normal form is obtained as an infinite
series so in practice we stop the expansions of the several functions at order ˜r = 30
for the 3D case and at ˜r = 50 for the 2D case. Since in both cases we compute the
first order of the remainder the normal form is constructed upto order 29 for the 3D
case and up to order 49 for the 2D case. We also useλ = 1:2, which means that the
radius of the final domain is 20% greater than the radius of theinitial domain. In
order to optimize the minimum escape time with respect tor we computeτr;1:2(ρ0)
via Eq. (5) forr running from 3 to the maximum order ˜r �1, for every value of
ρ0. We choose the optimal orderropt of the expansion as the one that gives the
maximum value of the escape time. Thus we get the maximum escape timeT as
function of only the radiusρ0 of the initial domain:

T(ρ0) = max
3�r<r̃

τr;1:2(ρ0) : (6)

Assuming as a meaningful time interval for the system the estimated age of the
universe, which is in our time units 1010, we can find the value of the radiusρ0 of
the corresponding stability region.

3. Application to real asteroids

In order to apply the above results to the real solar system weexamine if 98
real asteroids, which are located near the Lagrangian pointL4 (the ones tested by
Giorgilli and Skokos, 1997), are inside the estimated effective stability region. So,
using the orbital elements of the asteroids we compute theirposition in the various
coordinate systems introduced in the previous section, define the radiiR1, R2, R3

for every asteroid and estimate the corresponding radiusρ0 of the effective stability
region. Then an asteroid is inside the stability region ifρ0 � 1. We note that in the
2D case only the values ofR1 andR2 are used.
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In the 2D case we guarantee the effective stability of four real asteroids since
they are inside the planar stability region, while in the worst case a factor 27 is
needed for the most remote asteroid to be inside this region.The optimal order for
all asteroids isropt � 38, although the expansion of the normal form was performed
up to order 49. So the computation of the normal form to ordershigher than 38 does
not improve the estimations in the 2D case.

In the 3D case one real asteroid is inside the stability region, while in the case
of the most remote asteroid the estimated value ofρ0 is smaller than 1 by a factor
34. In all cases the optimal order of the normal form is the maximum possible,
ropt = 29, which means that the results may be improved for higher orders. We
remark that one would expect to find fewer asteroids inside the stability region in
the 3D case than in the 2D case, since the spatial stability region is projected on a
plane in the 2D case and points that are outside the spatial stability region may be
projected inside the planar stability region. The above results improve significantly
older estimations (Giorgilli et al., 1989; Celletti and Giorgilli, 1991) where no real
asteroids were inside the stability region and a factor 3,000 was needed for the
most remote asteroid to be inside this region.
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